Insights from the Data Science Salon’s AI & Machine Learning Conference in San Francisco

Have you ever had one of those days where it feels like you time-traveled into the future? That’s exactly how I felt when I attended the Data Science Salon’s conference on “Using AI & Machine Learning in the Enterprise” at Google’s San Francisco headquarters.

Tackling burnout with Large Language Models

Industry burnout is interlinked with cultural, individual, physical, or emotional exhaustion, and social factors, the resolution of which requires the technology-driven trends in the workplace and the technologies such as work pattern monitoring and Artificial Intelligence that can deal with large.

Data Privacy Challenges with Large Language  Models

Large Language Models (LLMs) have rapidly evolved, building on decades of research and advances in computing power and data availability. Most LLMs consist of billions of parameters; trained on vast amounts of diverse datasets. LLMs generate highly contextual and personalized outputs. This.

Introduction: From Simple to Multiple Linear Regression

In our previous post, we introduced Linear Regression, a fundamental technique used to predict outcomes based on a single factor—such as estimating house prices based on square footage. We also discussed essential performance metrics like Mean Squared Error (MSE) and R-squared, which help assess.

Exchanging Knowledge and Insights About AI and ML with DSS Community Events

Generative AI, synthetic data, language models in healthcare, AI in finance, and ML in the enterprise are among the most significant topics to be covered during the Data Science Salon community events.

Understanding Customer Concerns in Retail: A review of LLMs and Traditional ML-based methods for Topic Modeling and Multi-label Classification

Did you know that organizations risk losing an average of 8% of their revenue due to poor Customer Experience (CX)? This significant potential loss can be attributed to the fact that over 50% of consumers either decreased or stopped spending with a business after a bad experience.

Machine Learning in Production

In recent years, Machine Learning (ML) has propelled software systems into new realms of capability. From revolutionizing medical assistance and personalized recommendations to enabling chatbots and self-driving cars, ML has become a cornerstone of modern technology.

Selection Bias in product analytics and common pitfalls

Statistical Inference is centered on using random samples effectively. In order to draw a sample at random, one has to ensure that each observation is drawn independently from the same population. A random sample of observations is said to be independent, identically distributed (iid) and this.

Data Literacy as a Basic Need: The Vital Role of Data Literacy in the AI Era for Bridging the Gap

Data is now essential for organizations, driving their operations as a lifeblood and fueling Artificial Intelligence (AI). The amount of data produced daily is growing rapidly, currently reaching 2.5 quintillion bytes per day. Data Literacy (DL) is no longer just a skill; it has become a.

Linear regression basics guide - part 1

In today's data intensive world, data scientists play a crucial role. Their main job is to make sense of large amounts of data, turning it into useful information that can guide decisions. This involves both creative and technical skills, using a range of methods and tools. For beginners, it's.

SIGN UP FOR THE DSS PLAY WEEKLY NEWSLETTER
Get the latest data science news and resources every Friday right to your inbox!